
AR508-1 © 2020 Pico Technology Ltd. 1/24

Reference Guide

Serial Bus Decoding with PicoScope

Introduction

Serial communication buses are used extensively in modern electronic designs. Serial buses offer
significant cost advantages and some performance improvements over parallel bus communications.
First off, there are fewer signals to route on the board, so PCB costs are lower. Less I/O pins on each
device are needed, which simplifies component packaging and so reduces component cost. Some
serial buses use differential signalling which improves noise immunity.

There is a wide range of serial communication standards, each optimised for specific operating
conditions and differing design complexity, different speeds, power consumption, fault tolerance and,
of course, cost.

Although serial buses offer several advantages, they also present difficulties when troubleshooting
and debugging systems since the data is transmitted in packets or frames that need to be decoded,
according to the standard in use, before the designer can make sense of the information flow.
Nbovbmmz!efdpejoh!)ps!ǆcju!dpvoujohǇ*!tusfbnt!pg!cjobsz!ebub!jt!fssps!qspof!boe!ujnf-consuming.

PicoScope includes decoding and analysis of popular serial standards to help engineers see what is
happening in their design to identify programming and timing errors and check for other signal
integrity issues. Timing analysis tools help to show performance of each design element, enabling the
engineer to identify those parts of the design that need to be imp roved to optimize overall system
performance.

AR508-1 © 2020 Pico Technology Ltd. 2/24

PicoScope can decode 1-Wire, ARINC 429, BroadR-Reach (100BASE-T1), CAN, DALI, DCC, DMX512,
Ethernet 10Base-T and 100Base-TX, FlexRay, I²C, I²S, LIN, Manchester, PS/2, SENT, SPI, UART (RS-
232 / RS-422 / RS-485), and USB protocol data as standard, with more protocols in development, and
available in the future with free-of-charge software upgrades.

In this guide we look at some of the more common serial bus protocols and how to decode them :

Contents
RS-232/UART .. 3

I2C .. 5

SPI bus .. 8

CAN and CAN FD bus decoding ... 11

ARINC 429 ... 18

Manchester Encoding ... 21

AR508-1 © 2020 Pico Technology Ltd. 3/24

RS-232/UART
RS-232 is a standard for serial data communication first
defined in 1962 by the Electronic Industries Alliance for use
with data communication devices such as teletypewriters.

Later, personal computers and other devices made use of
the RS-232 standard for connection to peripheral devices
such as modems, mice, keyboards, etc.

In recent years RS-232 has become increasingly displaced
by USB in modern PCs, though the standard, and many
variants, are still widely used in industrial machines,
networking equipment and scientific instruments.

RS-232 signal ing

Typically, individual ASCII characters are transmitted as a
sequence of 8 bits bounded by a start bit and a stop bit, with a
bit order of LSB first and MSB last.

Electrically the voltage swing is relatively high and polarity is
inverse, so that a Logic level 1 is a low voltage between ƿ3 V
and ƿ15 V, and a logic level 0 is a high voltage between +3 V
and +15 V.

RS-232 is a low-speed standard for data transfer, with a baud
rate of 9600 being most commonly used. The low speed and
short bursts of data have the advantage that the receiver is able
to synchronize using the start bit alone and therefore no
addition synchronization clock line is required.

RS-232 decoding with PicoScope

RS-232 serial decoding is included in PicoScope as standard. The decoded data can be displayed in
the format of your choice: In Graph, In Table, or both at once.

In Graph format shows decoded data in Binary, Hex, Decimal, or ASCII format, aligned with the analog
waveform, on a common time axis. Decoded data can be zoomed and correlated with acquired
analog channels to investigate timing errors or other signal integrity issues that are root cause of data
errors.

AR508-1 © 2020 Pico Technology Ltd. 4/24

In Table format shows a list of the decoded packets, showing data values with the packet start and
stop times.

The PicoScope RS-232 decoder can also handle similar serial data standards such as RS-422 and
RS-485

AR508-1 © 2020 Pico Technology Ltd. 5/24

I2C

I2C (Inter Integrated Circuit) is a low-speed serial data protocol, commonly used to transfer data
between multiple components and modules within a single device.

Developed in the early 1980s by Philips Semiconductors (now NXP), I2C employs 2 signal wires to
usbotgfs!ǆqbdlfutǇ!pg!jogpsnbujpo!cfuxffo!pof!ps!npsf!ǆnbtufsǇ!efwjdft!tvdi!bt!njdspdpouspmmfst-!
boe!nvmujqmf!ǆtmbwfǇ!efwjdft!tvdi!bt!tfotpst-!memory chips, ADC and DACs.

Wiring

Nvmujqmf!ǆnbtufsǇ!boe!ǆtmbwfǇ!J3D!efwjdft!bsf!dpoofdufe!up!uif!cvt!
using two lines:

¶ SCL ƿ Serial Clock

¶ SDA ƿ Serial Data

Signaling voltages are typically 0 V for logic low and +3.3 V or +5 V
for logic high.

Pull-up resistors keep both lines at logic high level when the bus is idle.

Signaling

I2C bus speeds range from 100 kbit/s in Standard mode, 400 kbit/s in Fast mode, 1 Mbit/s Fast mode
plus, and 3.4 Mbit/s in High Speed mode.

Each device on the bus is recognised by a unique 7-bit or 10-bit address.

Ebub!jt!usbotgfssfe!jo!ǆqbdlfutǇ-!xijdi!jodmvef!uif!beesftt!pg!uif!efwjdf-!b!sfbe0xsjuf!dpnnboe-!
acknowledgements and the data being transferred.

The diagram shows the structure of a single packet of I2C data.

At the start of packet a master device takes control of the bus by driving SDA low while SCL remains
high. This indicates that a message will follow.

Next a 7 (or 10) bit address is transmitted followed by a R/W bit to indicate whether it is a read (1) or
write (0) instruction.

The addressed slave device then transmits an acknowledge (ACK) bit by pulling the SDA line low. If
the line remains high, the master can infer that the slave did not recognise the address and corrective
action needs to be taken.

After the address is acknowledged by the slave, the master continues to generate the clock and
depending on the R/W bit either the master or the slave will send data over the bus. After each byte of
data sent, an ACK is generated by the receiving device.

The end of packet is recognized by the SDA line going from low to high when the SCL is already high.

AR508-1 © 2020 Pico Technology Ltd. 6/24

I2C decoding in PicoScope

I2C serial decoding is included in PicoScope as standard.
Select I2C from the list of protocols in the Tools > Serial
Decoding > Create drop-down menu.

Settings

In the Settings box select the correct channels and thresholds for Data and Clock and choose the Bus
speed to match the device under test.

The bus can be given a name, such as "Temperature sensors", to make it easily readable.

Decoded data can be displayed in the format of your choice: Graph, Table, or both at once.

AR508-1 © 2020 Pico Technology Ltd. 7/24

Graph

Shows decoded data in a bus format, aligned with the analog waveform, on a common time axis.
Frames can be zoomed and correlated with acquired analog channels to investigate timing errors or
other signal integrity issues that are the cause of data errors.

Table

Shows a list of the decoded frames, including the data and all flags and identifiers. You can set up
filtering conditions to display only the frames or data you are interested in, search for frames with
specified properties, or use a Link File to translate frame ID and hexadecimal data into human-
readable form.

AR508-1 © 2020 Pico Technology Ltd. 8/24

SPI bus

Introduction

SPI (Serial Peripheral Interface) bus was originally developed by Motorola for use with their
microcontrollers. Due to the simplicity of the bus, other manufacturers adopted it and it has become
widely available in components used in embedded system designs. It is commonly used for chip -to-
chip communications between a CPU and keyboard, display, ADCs and DACs, real-time clocks,
EEPROM, SD and other memory devices.

SPI is a synchronous bus with four lines: Data - master output/slave input (MOSI) and master
input/slave output (MISO), clock (SCLK), and slave select (SS or CS). SPI is a full duplex standard,
meaning signals can be transmitted in both direction s simultaneously, with data rates from a few
Mb/s to tens of Mb/s.

Devices communicate using a master-slave architecture with a single master. The master device
initiates the frame for reading and writing. Multiple slave devices can be addressed with indiv idual
slave select lines.

Wiring

The SPI bus is a master/slave, 4-wire serial communications bus. The four signals are Data - master
output/slave input (MOSI), master input/slave output (MISO), clock (SCLK), and slave select (SS or
CS).

SPI connections, single slave device

Signaling

Whenever two devices communicate, one is referred to
bt!uif!#nbtufs#!boe!uif!puifs!bt!uif!ǆtmbwfǇ/!Uif!nbtufs!
drives the serial clock. Data is simultaneously
transmitted and received, making it a full -duplex
protocol. SPI uses the SS (or CS) line to specify which
device data is being transferred to or from, so each
unique device on the bus needs its own SS signal from
the master. If there are 3 slave devices, there are 3 SS
lines from the master, one to each slave.

To begin communication, the bus master configures the clock, using a frequency supported by the
slave device, typically a few MHz or tens of MHz. The master then selects the slave device with a
logic level 0 on the select line.

SPI full duplex shift register

SPI wiring master to three slave
devices

AR508-1 © 2020 Pico Technology Ltd. 9/24

During each SPI clock cycle, a full duplex data transmission occurs. The master sends a bit on the
MOSI line and the slave reads it, while the slave sends a bit on the MISO line and the master reads it.

Transmissions involve two shift registers of a given word size, such as eight bits, one in the master
and one in the slave. Data is usually shifted out with the most-significant bit first, while shifting a new
least-significant bit into the same register. Af ter the register has been fully shifted out the master and
slave have exchanged register values. If more data needs to be exchanged the shift registers are
reloaded and the process repeats. Transmission may continue for any number of clock cycles. When
complete, the master stops toggling the clock signal, and deselects the slave.

The master device must select only one slave at a time. Slave devices on the bus that have not been
activated using their chip select line must disregard the input clock and MOSI s ignals, and must not
drive MISO.

Capturing and analyzing SPI with PicoScope

To decode SPI data first acquire the packets
of interest using PicoScope.

Then select Serial Decoding from the Tools
menu.

Click Create and select SPI from the list of
available protocols.

AR508-1 © 2020 Pico Technology Ltd. 10/ 24

Select the corresponding PicoScope input channels in the SPI configuration menu for Data (MOSI /
MISO), Clock, Slave Select (SS). Set any other parameters as necessary. Click OK to see the decoded
SPI packets in the PicoScope graph display.

In the SPI configuration menu, check both the In Graph and the In Table boxes to display SPI packets
correlated in time with the acquired data channels plus a tabular listing of the packets. Double -click a
packet in the graph view to see the same packet in the table view, and vice versa.

